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Abstract: We exa mine the beliavior of the scattered electromagnetic field from random
Gaussian power-law surfaces for near grazing incidence. Using the method of moments and
periodic boundary conditions, we calculate the bistatic cross section for both polarizations
and a variety of surface heights and slopes for incidence angles as large as 89°. We exa ni ne
the results to elucidate the scattering mechanism which domi nate at these high grazing
angles andfind evidence for Bragg scattering as well as shadowing effects and surface modes.

The polavimetric behavior of the field is discussed in detail.
1 Introduction

While the main physical mechanisms for moderateincidence angle scattering from rough
surfaces are qualitatively understood (although we still lack a theory which gives good
quantitative results for all surfaces), the same cannot be said for scattering near grazing
incidence. We know that shadowing must play some role, but we do not know how to derive
a shadowing correction from first principles. There are some near grazing data from the
ocean surface (see Wetzel [199 ()] wnd Trizua [1991] for a review) but with ocean surface
dataitishardtobesure thatthe surface is adequately characterized atthe appropriate
lengt liscales. Ocea 11 data seems to indicate that the small perturbation method (S1°M)
[Rice, 190 1) provides unexpectedly good predictions for vertical polarization, butunot for
horizontal polarization. It has been observed that the ocean horizontal cross section can be
as large as the vertical one, and that the returns can exhibit highly intermittent behavior.
Aconnection of these observations to shadowin g or feature scattering has been suggested
[Wetzel, 1990]. In spite of these pieces of information, we still donothave a clear physical
understanding of the general scattering mechanisms in operation, or whether such a thing
exists.

One of the problems with trying to disentangle these clues is that we do not know
if present scattering theories (after, perhaps, being corrected for shadowing eflects) are
adequate and the surfaces arve insufticiently characteriz ed; or whether these theories are
fundamentally wrong in this incidence regime. The purpose of this paper isto help elucidate

this question by presenting the r(suits of numerical scattering calculations at small grazing



icidence for viwious surface hoig hits, slopes, and polarizations and to describe the behavior
of thescatteredficld as these quantitiesare varied. The emphasis of this paper will beinthe
presentation of the numerical results and a discussion of the physical scattering mechanisins
which can be inferved fronmn these result s,

To this end, we have implemented a periodic boundary condition version of the method
of moments (MOM)whichallowsusto avoid edge current effects which have restricted the
application of this method to small grazing angle incidence. T'he numerical implementation
of this method is presented in the next section and Appendix A. The following three sec-
tions are devoted to studying the far field polarimetric response, the surface current, and
shadowing and near field effects. The detailed comparison of these results against analytic
theories will be given elsewhere, although we present some qualitative discussions of this
topic. The present work ex tends previous work by Thorsos [1 990] and Ngo and Rino [1 993]
by examining the incidence angle beyond 80°, and by giving a fully polarimetric treatiment

of the scattered field [Michel ot al., 199'2].
2. Numerical Implementation

‘1 "he numerical implementation Of the scattering calculations cousisted in generating
ensembles of Gaussian rough surfaces; using the method of moments (MOM) to calculate
the surface current; caleulating the scattered field inodes; and, finally, deriving the average
polarimetric signature by averaging over the ensemble. Due to computational limitations,
we restricted ourselves to one-dimensional perfectly conducting sulfates.

Therandomsurfaces were generated by making anuncorrelated, unit variance, Gaussian
ra ndon noise sequence in the wavenumber domain, applying the appropriate filter function,
and Fourier transforming to the coordinate domain (for details, sece [Rodriguez, et al., 1992]).
The surface spectrum was proportional to £7°, and we examined a spectral decays of s= 3.
T'his spectral decay is observed in ocean surfaces. We also examined aspectral decay of
s = 2.5 but do not show the results here since the conclusions drawn from them are similar
to the s = 3 case. The smallest wavelength present in these surfaces was 0.2 A, where

A is the clectromaguetic wavelength. The longest wavelength, A, was varied to examine



the effects of changing the correlation length (or the surface slope to height ratio). We
exainined the longest waveleugths of 102.4X, h1.2A, 25.6A, and 12.8X. Three surface root
mean squared (rmis) heights were examined: 1.\, 0.5A,and 0.1A but we do not present the
0.5A results since they add nothin g of consequience. Pigure 1 presents the surface slopes and
curvatures for the s = 3surfaces, as well as the fraction of the surface which is in monostatic
shadowing for various two-scale high frequency shadowing cut-offs T'wo-scale shadowing is
itmplemented by calculating the shadowed area after the high frequency components above
the cut-ofl’ frequency arve removed. Ascan be seen, a substantial fraction of the surface is
shadowedforthelargersurface heights, evenwhenthe tI$c)-scale’ sl~aclowi]lg clltofl is set to
HA,

The biggest problem eucountered in MOM calculations from random rough surfaces
is the avoidance of edgeeflects. This problem was recognized long ago by Axline and
Fung [1978] and various methods have been proposed to deal with it. Currently, the most
popular method in the literatu re is the tapered wave method introduced by Thorsos [1988],
where the incident field is taken to be a tapered field which satisfies Maxwell’s equations
approximately, butattenuates the return from the edges so they are neglegible. While this
method is very attractive from the numerical standpoint, it is limited by the validity of the
tapering approximation. Thorsos[1988] has shown that the approximation is valid as long
the parameter ¢ = A/ L costly << 1, (Inthis expression, I, is the surface length, andfq is
theincidence angle.) It is clear that, as % — 7 /2 one must have I, — oo for the parameter
to remain small. This makes the method unsuitable for near grazing calculations, although
Ngo and Rino [1993] have extended the validity of the method to approximately 80°,

Auwalternate way of avoiding edge effects 1s to assume that the surface is periodic and
that the period is large cnough so that the scattered field, which now has a discrete angular
spectrum, approximates the continuous spectrum from aninfinite surface, This will be true
if the angular separation between modes is smaller than the angular resolution required
to observe the surface. Thismethod was proposed by us [Rodriguez et al., 1992] [Kiwm et

al., 1992]to deal with moderate incidence angles and the reader is refered there for our




conventions. The key to implementing this method is the evaluation of the periodic Green’s

function and its normal derivat ive onthe surfa ce. In the work citedabove, we approximated
the Green's finction by summing only a few terws of its infi nite series representation. While
thisisadequate for moderate incidence apgles, it is notsuflicient as the incidence angle
approaches grazing. Here, we make use of an integral representation of the periodic Green’s
function obtained by Veysoghu et al. [1991] together wit ki some approximatio ns which make
the Monte Carlo evaluation computationally efficient. The details of the numerical method
are presented in Appendix A .

We used the expressions for the Green’s function obtainedin Appendix A together with
the MOM. For cach case studied, we used a total of 100 Monte Carlo realizations and all
the calculations were performed using double precision arithmetic. The energy conservation
was calculat ed for case and was found to be better than 0.1% in all cases, and better than
0. 001% in most cases.  We estimate that the error bars in our scattering results due to

speckle are of the order of 4 1 dB.
3. Far Field Results

For one dimensional surfaces, the complete polarimetric Stokes matrix has only four
non-zero elements [Michel et al., 1992}, Rather than using the Stokes matrix elements, in
this paper we will examine the following paramneters which contain the same information

but are easier to interpret physically:
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where 8, is the scattering angle for the nth propagating mode slid is given by the grating
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L8, ) and FEy(8,, ) are. respecti vely, the horizontal and vertically polarized scattering

modes,andwe have normalized the bistatic cross sectiousuch that it agrees with nonperiodic
surface case after integrating o ver all scattering angles [Lou et al., 1991]. The parameters
and (1) representthe magnitude ofthe field correlation andthe relative phase difference
between the 11- and V-polarized ficlds. In the Small Perturbation Method (SPM) or Physical
Optics limits the correlation should be unity and tile Haud V fields should be out of phase
by 180°. Deviations from these values canbe due to two causes: adifferent scattering
mechanis (such as multiple scattering or shadowing) applies; or,the surface features
responsthle for producing the scattering arve différent for the two polarizations.

W e examine first the small surface helght limit, The expansion parameter for the SPM
is givenby b= kay cos By, where oy is the surface height standard deviation, and we expect
that SPM will always apply for small surface heights provided the surface slope is small,
which is the othier assumption made in deriving the SPM results. Figure 2 presents the
results for the four polarimetric paramneters for anincidence angle of 89° and oy, = 0. 1A.
These results are what is expected when SPM holds: the bistatic cross section is (aside
from an angular factor) a refllection of the magnitude of the Bragg wavenumber Fourier
component. For the two surfaces whiose longest wavelengths are 51.2) and 25.6 A, there are
no resonant Brage waves close to the forward direction and the bistatic cross section shows
aseveredrop for these angles. The sinall contribution in this direction can be attributed to
non-Brage or multiple scat tering. With the exception of these angles, and of the near grazing
mode inthe backward direct ion, the field correlation is unity. The one deviation from the
expected SPM beliavior is shown by the 1V relative phase diflerence which decreases to
170° for the surface with thehighestslope variance. Also, uotice that the phase diflerence
for theangles where single Bragg scatter is not supported shifts radically. This is consistent
with the multiple scattering interpretation for the mechanism: a double bou nce event has
@ = 0 in the physical optiés limit. The results for an incidence angle of 80° (not shown) are
similar, butinthat case the discrepanciesin tile correlation coeflicient and the phase shift

in the single Brage scatter regi onare not present indicating that at this incidence angle




SPA holds even better.

ext, we examine Che large surface limi ., kay, = 2. Notice that if we are to take é as
the sole guide for the applicabilty of SPM, we should expect SPM results are good very
near grazing, independent of the surface height or the surface slope. Figure 3 shows the
scaering results for an incidence angle of 80° aund four surface types. Notice that the
smoother surfaces still behave close to the way expected from SPM. The major departures
from this assumption are n the BV phase differece, which is now close to 160° for all angles,

and I the correlation coceflicient, which decreases away from the specular direction.

lore interesting behavior is observed for he surfaces with the higher slopes. First of
all. he backscatter cross sec jon nereases dramatically in the backward direction. In the
forward direction, vertica and horizontal polariza ions show very different behavior. As the
surface slope increases the vertically polarized energy in he forward and nearby directions
decreases dramatically. “or horizon al polarization, on the other hand, the decrease is much
smaller in the coherent direction although we have shown hat this energy is in fact not
coheren by calculating he coherent component and no icing that it not follow this
trend,

We also notice tha the angles near the forward direction, where no single Bragg scat-
tering, exists are now completely filled, suggesting the presence of multiple scattering. This

surmise is reinforced when we examine the HV phase diflerence for these angles: for the

roughest surfaces he phase difference approaches zero, even in the forward direction, in-
dicating, hat for these angles mul ple scattering is the dominant mechanism. This is cor-
roborated also by the correlation coeflicient which decreases dramatically near the forward
direction

For the other scattering angles, we notice the HV phase difference is very close to 160°,
almost independently of the surface slope. The correlation coeflicient also tends to drop
i the backward direction indicating hat the  and V sources may be different in these
directions. As we will argue below, his may be due to the diflerent behavior of the field in

the shadow zones and 1y its coupling to surface waves.




Figure d presents similar results for anincidence angle of S‘JOVindicating that the scatter-
ing behaviorobservedhere is notastrong function of the additional shadowing encountered
as the ang le approaches grazing. To further examiue the source of the scattering we tried to
isolate the single Brage scatter contribution by filtering the surface insucha way that no
rosonant Brage components existed for scattering angl es simaller than  O°. Figure 5 sh ows
the results. Up to 0°, the cross sectious remain unaltered, but for negative augles there
is a dramatic drop of two ord ers of magnitude in the scatted energy. This seems to in-
dicate that, while SPN is not accurate, Bragg resonance is gill the dominant scattering
mechanism in these directions. Notice also that the drop-ofl occurs less suddenly for the
rougher surface indicating that resonance with wavenumbers near the Brage waverumber is
important as the surfaceslopeincreases. This is also a feature of the unified perturbation

mcthod (UTPM)[Rodriguez and Nim, 1992],and c)ft~~ o-scale'tlicories in general.
1. Surface Current Results

An advantage of solving the scattering problem numerically is that one obtains the
surfac ce a1 (p asa byproduct. 1 this section we examine the current to gain further
insight into the scattering mechanism near grazing., lHowever, rather than analyzing the
surface current directly, weexamine a related quantity, which we call the source function
and define it as

/= '2 1 (Vf)’]w exp [~ i (Fo - fi~ po€)}J (6)
where J is the surface current; kg and - pp are the horizontal and vertical components of

the incident wavevector, respectively; and 7 is the impedaunce of free space. By removing

thephase (', we have obtained a quantity whose Fourier transform,

canberelatedtothe surface spectrumaccording to S])hl and UPM. Inthe previous equa -
tion, we have taken the source function in one dimeunsion, as appropriate for one dimensional
numerical experiments. A's otivation for the following results, we present the results ob-

tained for the spectrum of the source function according to first order UPM.




For horizontal polarization, the spectrum of the UPM source function is given by

< HLED > 2mcosbpb(y ) 4 W(y) cos? 0olp(y) - pol? (7

where p(y) = (k2= (xo4 7)2)Y? s the vertical component of the propagation wavevector, and
V(7)) is he surface height spectrum at wavenumber 4. The term con aining the square of
the delta function is due to the coherent current. Notice that the other term is proportional
_:::.y._:.::.ci:é:,::_:_:_<:_:.f._:.y.:;:.:Zin%ol.o._,o_.,<m<2:::72‘mnoﬂ._.cm_vo:%:m

to the cohierent and backscattered directions.

wirce function is

For vertical polarization, the spectrum of the UPM
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Notice that, in contrast to horizontal polarization, this expression exhibits a singularity
which is egrable on the field  when there exists coupling to surface waves; i.e., when
p(v = 0. It will be of nteres Lo sce from the numerical results whether the source function
is strongly peaked at this wavenumber indicating that this type of coupling is physical
ather than an artifact of the perturbation solution. In addition to these results both SPM
and UM predict (to the degree of approximation used here) perfect correlation between
he I and 'V osource func.ions since they are both proportional to the Fourier transform
of the surface height only, and zero phase difference for the wavelengths corresponding to
propaga ing modes,

Migures Ga-c¢ present the results for the spectrum of the source function for three surface

types and an incidence angle of 89°. The average has been taken over 100 realizations.

The coherent peak located a 0 is clearly apparent for all three surface types and
for both polarizations. lor the smoothest surfaces, the horizon al polarization spectrum
clearly shows a mull at the expected wavenumber, i.c., when p(y) = po, but as the rough-
ness nereases She null fills in, indicating possible multiple scattering contributions. For

vertical polarization, on the other haud, the enhancement at the wavenumber appropriate

for coupling to surface waves is clearly evident for all three surfaces indicating that this
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tvpe of ¢ oupling is arobustcontributor to the scattering for all slopes. We notice that

the correlation decreases with surface slopes and that the decrease is especially apparent
for Brage waves which coupleinthe backward direction. We also notice that the relative
phase increases for these waves. Thissuggests that different scattering mechanisms are
responsible for scattering in the hackward direction for cach polarization.

To further study the influence of the Brage scattering mechanism, we compute the source
Munction spectrum n l“igu]’pg Ta-clora surface whiose Fourier components of Wavel engt h
smaller than A have beenreimoved. For dl the surfaces, the spectrumof the source function
shows a dramatic fall-oft’ for wavelengths smaller than the Bragg cutofl’ while remaining
anc -hanged for the larger wavelerigths, This gives a clear indication that even though the
correlationand phase difference results do not match exactly with the expected SPM re-
sults, the Brageresonant scattering mechanism is still the dominant scattering mecha nism
operating at t 110sC incidenceangles.

As an interesting featn re, notice that the enhiancement at p(y)= O is still present
for vertical polarization, ¢ ve n though the resonant waves have heen removed. This is in
qualitative agreement with the higher order predictions of UPM. Notice also that once the
single scattering component is remove, there appear enli ancements of the surface spectrum
for wavelengths equal to A/4. These enhancements are present for both horizontal and
vertical polavizations and for the t hree surface types. We do not have an explanation for

the hehavior at this time.
i, Near Field and Shadowing Results

It is often hypothesized that shadowing plays a key roleindetermining the scattering
beliavior as the incidence angle app roaches grazing. To examine this conjecture we looked
at the amplitude of the surface current and the near fieldin arecas which are known to be in
the geometrie shadow, Shadowing is a multiple scattering phenomenon and it is of interest
to examine the structure of the near field in these areas. FPurthermore, from the discu ssion

above, we expect that the vertical polarization results will exhibit some sort of coupling to
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localized surface waves, Thiscoupling should be appare nt if one examines tile evanescent
ficld.

The et hod of caleulation using periodic bou ndary conditions offers the distinct ad-
vantage that the near field canbe separated into its propagating and evanescent (as well
asupward and d ownw ard) compouents. Figure Spresentsthe horizontal polarizationnear
and evanescent fields for a surface feature which causes deep shadowi ng. From the near
field magnitude it is clear that the peak to the left is causing knife edge diffraction into
the shadowed valley. A similar calculation (not presented here) shows that almost all of
the field iuside the shadowed valley is due to downward propagating waves, as one Would
expect from intuition: the peak current reradiates the appropriate field for the knife edge
diffraction and to cause shadowing. Inthe region below the knife edge shadowing field,
the deep shadow, the current mag nitude decreases dramatically. 1t starts to increase in the
kunife edge diflraction area.ov([l though it is dill inthe geometric shadow. The evanescent
field is strongest in the deep shadow area, where it is needed to extinguish the incident
field All tilt’ hP observationsagreeewell with our intuitive expectations. We also note that
the currentmagnitude increases dramatically on the slopes pointing toward the transmitter
and that most of the backward propagating ficld seems to emanate from these points of
high slope. This implies that near grazing the scattering mechanism also depends strongly
on the local slope, as well as on the presence of Bragg resonant waves. This is consistent
with the results obtainedin tile previous sections.

Figure 9 presents the equivalent results for vertical polarization. We see that the knife
edge diffraction is still present, as is the scattering in the backward direct ion due to the sur-
face slopes. But, in contrast to the horizontal polarization case, the current decreases much
less in the region of deep shadow. “1'list thetransition should be slower is to be expected
because the vertically polarized curent cannot change abruptly in the horizontal direction
and still sutis{y the charge continuty equation, unlike its horizontalcounterpart which flows
intothe page. However, this phenomenon is expected to last only a few wavelengths, not

fiftecu, as seen in the figure. Whatis apparentinthe plot of the surface current is thatin
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the deep shadow region the surface current is dominated by a single frequency component
whose wavelength is approxi mately half an electromagnetic wavelength. That a surface
wave is indeed present can be seen in the evanescent field maguitude which exhibits mo -
lations which closely correspoud to the surface current and whhich has phase fronts in the
vertical direction. The horizontal polarization results do not exhibit a similar phenomenon,

If the surface waveisdue to strong coupling of the momentum to a particular surface
wavenumber component, as predicted by UPM, for instance, we should expect that if that
surface component is rernoved, the surface waves will bestrongly attenuated. In Figure 10
we present the near field secattering results for a filtered version of the surface usedin
Figure 9. The filter has removed all surface components whose wavelength is smaller than
A Figure 10 shows that, whilemany of the large scale features of the scattered field are
common to both examples, the surface wave is strongly attenuated, as expected. This can
also besecenby examining t hesurface current magnitude, which dots not present the same
rapid oscillations present in Figure 9,

The UPM results predict that, if the surface is rough enough, there will be a strong
coupling to surface waves, evee nwh en the incidence angle is not near grazing. As a final
test for the validity of the mechanism proposed above, w e present in Figure 11 the near
field results for the same surface used in Iigure 9, but for an incidence angle of 60°. While
the near field results are quite different for this case, the evanescent field still s}iows the
presence of a surface wave, as does the surface current.

The example choscn here is {for a very rough surface since this tends to enhance the
shadowing phenomena.  However, the phenomena discussed here are present for smaller

surface slopes, nilt are correspon dingly smaller.
6. conclusions

We presented calculations for scattering from power law rough surfaces at incidence
anglosvery clew to graziug incidence. For small surface heights, we showed that resonant
single Brage scattering dominates.  As the surface height increases, we showed how the

cross scctions changed and arguedfor the presence of double bounce scattering close to the
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forward direction. Although the scattered fields no longer have the typical SPM behavior,
we fonnd strong evidence that a Bragg resonant mechanisin (which is quantitatively different
from SPM) was still the dominant scattering mechanisi. However, we also showed that, for
the surfaces with the higher slopes, other mechanisms, such as shadowing, edge diffraction,
or surface tilts, were also important. We found indications that in the vertically polarized
case coupling to a surface mode was possible and showed that this is qualitatively consistent
with predictions of perturbation theory. A more detailed comparison of the numerical results

with analytical theories will be given elsewhere,
Appendix A
The periodic Green's function is given by [Tsang et al., 1986]

(7 2: 1"} (\/— (2’ + ml,)) -{ ( i,’)b> exp [imk sin 61 (9)

THT —
Veisoght et al. [1991] have evaluated the sum
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where we use aslightly dillerent notation from Veisoglu et al. to emphasize the symmetry

properties of the sum

@ = k(z - 2 (12)
b (a2l (13)
s =kl (14)
ro=  -klLsinty (15)

Theintegral is rapidly convergentandcanbe evaluated uuwmerically. Given this sumn, the

periodic Green’s function can be written as

Op = A—})llf, k\/(sbb) + a? ) +5(a,b,78) 4 S(a,—b,—7, ) (16)
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While the previous expression provides an exact evaluation of the periodic Gren’s func-
tion, it is not convenient for use in Monte Carlo applications. The function S(a,b, 7, s)
depe ndson the surface heightthroughthe parametere. Thiswmeans that .S must be numer-
ically integrated as niany timesasthenumber of clements in the MOM matrix. For large
surfaces, this is impractical since it makes the matrix loading the most computationally
expensive part, by far. To overcome this problem, we will make use of the fact that we are
interested in surfaces which are nowcel 1 longer than the electromagnetic wavelength. Irom

the definitionol 5w, b.r,s), onecanshowthatthe following identity holds:

SN L
'l 2: lltl, <\/<2(m 4 by (1'2> P S(a,b,s,r)- (:”\"T.S'((z,/\’ + b,r,8) (17)

ez
and the periodic Green” function can be written as
N [
[ , - ‘Nr o —iNT o
gp= = L 1} <\/¢1 (4 0)? 4 (12> 4 NS, N4 by s)4 e NS (a, N - b, —7,8) (18)

1 mz ~ N

Since b > - 1, for long surfaces one will have that s2(2 4 b)2 > «?, or, equivalently, that
1> (h- 1')?/L?, where his the surface height. When this is the case, the exponential in
the integrand of S will dominate the value of the integral and the parameter ¢ will only
have a small influence, This allows us to expand S in terms of @

S(a,N A bys,r)m y " =mm- - " (19)
n=0 L

where S04 is the pep partial derivative of .S with respect to @, and is casily obtained by
differentiating equation ( 11 ). These integrals are also rapidly convergent and independent
of the surface height so that they can beprecomputedand stored in tables.

The numerical evaluation of thie Green’s function is performed by evaluating equa-
tion (18 ) and replacing 5 by its approximation, equation ( 19 ). In this paper, we
havechosenthe surface length to be 102.4) and the surface is sampledat 0.1\ intervals.
Ry comparing against the exact result we have found that it is suflicient to take N = 1,
and 7,4, = G. All the iutegrals, as well asallsubsequent calculations, were computed

with double precision arithmetic. There isno absolute test of the numerical accuracy of the
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MON results, but he e are some necessary tests to which we subjected our results. Most

importantly, we checked the degree of energy conservation: for all the results presented

here, the energy conservation was better than 0.1% , and in most cases it was better than

0.001Y

‘or selected surfaces, we also checked the periodicity of the surface current, the
reciprocity of  he scattered field, and the extinction of he field below the surface. All the
results presented here sadisfied hese tests to a good accuracy.

For the vertical polarization calculations, it is necessary to compute the norinal deriva-

tive I he € cen’s function at the surface. Using the previous results, we obtain the

following expression

. N o - i )
n-Vy, = ! A s2om o b4 a2 - :‘.W‘\:‘,w@\:mwign
LY s% (m 4 SN + a?
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where fris the surface slope, and

tha
Qlab, sy = el st
T 4]
Iy (0 - 1) cos {auvu?  2i e
- N Ly wsin {auvu? - 2i (2)
/\: 1.&

his expression is evalau ed, in analogy with the expression for the periodic Green’s func-

tion, by expanding Q) in powers of « to sixth order
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Figure Captions

Figure 1: Figuve la shows the percent of the surface ilvminated for surfaces whose
longestwavelength vis 1020\ (empty cireles); 51.20 (full circles); 25.6\ (emply squares);
and 1280 (N 1l squares). Figure | b shows the s slope (empty circle) andrms curvature
(solid cirele) for the same surfaces. Thie spectral decay power is -3,

Figure 2: Polarimetric parameters for o, = 0. 1A, 89% incidence angle and A = 102.4A
(crosses), A = 512 (diamonds ) and A = 25. 6\ (triangles).

Figure 3: Polarimetric parameters for oy, = 1.0A, 80° incidence angle and A = 102.4A
(crosses), A = 51.2A (diamonds), .\ = 25. GA (trianigles), and A = 12.8X (squares).

Figure 4: Polarim etric paraeters for o, = 1.0A, 89° incidence angle and A =102.4A
(crosses), A = D1.2A (diamonds), aud A = 25.6A (triangles).

Figure 5: Same as figure 1. but the surface has been filtered so that no wavelengths
stadler than \ are present.

Figure G: Source functionspectrum (11 polarizationi-triangles; V polarization-mosses),
HV correlation coeflicient and phase difference for 0o =890 and A =102.4) (a), A = 51.2)
1), and A=25.6A (c).

Figure 7. Same as figure 6, but the surface hasbeen filtered so that no wavelengths
smaller than A are present.

Figure 8: Horizontally polarized near field ( top), evanescent field (middle), and surface
current {bottom) for 8y = 89° and a surface from the set of A = 25.6) surfa ces,

Figure 9: Same as figure 8, but for vertical polarization.

Figure 10: Same as figure 9, butthe surface has been filtered removing any components

whiose wavelength is small er than A,
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Figure 11: Same as figure 9, hut the incidence angle is 60°,
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